

"Request for Information Response for the Flight Validation of Adaptive Control to Prevent Loss-of-Control Events"

Overview of RFI Responses

John Bosworth (661)276-3792 john.bosworth@nasa.gov

August 2009

NASA Aviation Safety Program

Response Overview

RFI closed end of May 2009

Over 20 responses received

Good cross-section of community

Honeywell, MN

Zona Technologies, AZ

Calspan, NY

Boeing Corp, MO

NAVAIR

GA Tech.

Pratt & Whitney, CT

Optimal Synthesis Inc., CA

Univ. of Michigan

Key Technologies / Areas of Interest

 Integrated engine/aero surface control 	(7 responses)
 Adverse pilot/controller interactions 	(7 responses)
Structures / structural modes	(6 responses)
 Metrics for evaluating adaptive controllers 	(5 responses)
 Methods for V&V of adaptive systems 	(5 responses)
 New analysis techniques for adaptive control 	(5 responses)
 Autonomous vs. semi-autonomous recovery 	(4 responses)
 Integrated adaptive inner- and outer-loops 	(3 responses)
 Adaptive control in redundant architectures 	(3 responses)
 Recovery from unusual flight conditions 	(2 responses)

F-18 IRAC RFI Response Summary

Other Interesting Comments

- Adaptive control should be integrated with a baseline controller and only used when necessary (5 responses)
- Implementation as an emergency system
 - Immediately re-stabilize and return to controlled flight
- Forced perturbation (excitation) for fine-tuning system
 - Check margins
 - Develop requirements for amplitude of excitation
- •Adaptive system can improve performance by eating into margin constraints imposed on the non-adaptive system
- Nonlinear effects due to multi-string voting

F-18 IRAC RFI Response Summary

Other Interesting Comments

- •It may be difficult to convince the aerospace community that results from a military fighter testbed are applicable to transport aircraft
- •Lesson learned from VISTA: modifications to the functionality of the aircraft are doubly expensive due to the cost of recertification
- Evaluation metrics should include complexity of V&V and implementation

- "The usual elephant in the room is how to provide an airworthiness certification for an adaptive controller."
- Need for simplified adaptive system
 - Contrary to the "publish or perish" mindset
- Use augmentative control approach rather than full-scale substitution
- Monitor that assumptions used in stability proof remain valid
 - "Validation will have to include ensuring all the assumptions that adaptive guarantees are based on are in-fact met"

Obstacles

- "shortage of engineers with relevant adaptive control knowledge and experience"
- "scarcity of flight experiments using realistic platforms"
- Nonlinear time varying system
- Need Guaranteed Performance Adaptive Controllers
- Need meaningful performance objectives

Summary

- Thanks for the very good feedback
- This process will provide a high-payoff, high-quality flight experiment

"Request for Information Response for the Flight Validation of Adaptive Control to Prevent Loss-of-Control Events"

Experiment Classes

John Bosworth, (661)276-3792, john.bosworth@nasa.gov

August 2009

NASA Aviation Safety Program

Full-Scale Flight Experiment

- Validate or Invalidate the "Imagined" problems
 - Those issues that can't be convincingly answered in simulation or subscale testing
- "Real" world effects
 - Turbulence, gusts, wake encounter, etc.
 - Real sensor characteristics
 - Static structural constraints
 - Aeroservoelastic constraints
 - Interaction with pilot
 - Seat-of-the-pants feedback
 - High gain handling tasks
 - Aerodynamic uncertainties
- Added credibility for the methods that show the most promise

- "The Super Hornet, even more than it's predecessor, has incorporated a number of tradeoffs between flying qualities and keeping structural loads in the box."
- Potential Experiments
 - Control within structural constraints
 - Ex: Fly same maneuver while reducing twist on one wing
 - Fiber optic shape sensors as "pain feedback"
 - Reconfigurable retrofit drive adaptation through existing pilot input paths
 - LIDAR for gust load alleviation, wind shear / wake encounter mitigation
- Pluses
 - F-18 has real loads constraints
 - Much more tolerant to unexpected excursions
 - Highly instrumented for loads
- Concerns
 - Not a civil transport

Adaptive Control Integrated with Propulsion Control

- Potential Experiments
 - Slow responding effector integrated with faster aerodynamic control
 - Modify FADEC for
 - Quicker engine response mode for emergencies

Pluses

- Many controls including throttles that can be rate limited
- Biggest benefit of adaptive control of engines is performance (economics) not safety (dual use)

Concerns

- Close coupled placement of engines
- Changes to FADEC would be expensive
- Lot of previous work done are there really fundamental questions remaining?

Adaptive Control Integrated with Aeroservoelastic Constraints

- Potential Experiments
 - Spatial sensing to eliminate structural modes from rigid body
 - Self-tuning notch filters
 - Study effect of interaction with high-gain adaptation
- Pluses
 - Existing notch filters could be faded out
 - Easy fail-safe reversion (turn filters back on)
 - Not immediately catestrophic
 - Very hard to model and accurately predict (makes good flight experiment)
 - Would provide much needed ASE model validation
 - Enabling technology for lighter structures
- Concerns
 - More sensors more potential failure modes
 - Need to manage the phase loss effect on rigid body control

Adaptive Control Integrated with

Pilot Interaction

- "at a very minimum the flight crew must be aware of the current state of the adaptive controller"
- Potential Experiments
 - Changing stick characteristics to inform pilot of degraded achievable performance
 - Provide gentile autopilot function that is can safely guide an extremely damaged vehicle (within very tight maneuvering constraints)
 - Develop pilot cues for remaining control authority
 - Develop emergency response and recovery system
 - "needs to be minimally invasive and take action only in the most dangerous circumstances when otherwise there would have been loss of control and eventual crash"
 - Investigate effect of an adaptive control system interacting with another adaptive system
- Pluses
 - Difficult to fully validate in simulation (makes good flight experiment)
 - Good handling qualities tasks
 - Air-to-air tracking
 - Formation flight
- Concern: Civil transport pilot interactions might be significantly different

Adaptive Control Integrated with

NASA

?

Your Thoughts?